Internal DNA pressure modifies stability of WT phage
نویسندگان
چکیده
منابع مشابه
Ejecting phage DNA against cellular turgor pressure.
We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estima...
متن کاملOsmotic pressure inhibition of DNA ejection from phage.
Bacterial viral capsids in aqueous solution can be opened in vitro by addition of their specific receptor proteins, with consequent full ejection of their genomes. We demonstrate that it is possible to control the extent of this ejection by varying the external osmotic pressure. In the particular case of bacteriophage lambda, the ejection is 50% inhibited by osmotic pressures (of polyethylene g...
متن کاملOsmotic pressure: resisting or promoting DNA ejection from phage?
Recent in vitro experiments have shown that DNA ejection from bacteriophage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I in the course of ejection. In this work, we argue by a combination of experimental techniques (osmotic suppression without DNase I monitored by UV absorbance, pulse-field electrophoresis, and cryo-transmission electron micro...
متن کاملInfluence of internal capsid pressure on viral infection by phage lambda.
Ejection of the genome from the virus, phage lambda, is the initial step in the infection of its host bacterium. In vitro, the ejection depends sensitively on internal pressure within the virus capsid; however, the in vivo effect of internal pressure on infection of bacteria is unknown. Here, we use microfluidics to monitor individual cells and determine the temporal distribution of lysis due t...
متن کاملStability puzzles in phage lambda.
In the absence of RecA-mediated cleavage of the repressor, the lambda prophage is exceptionally stable. We develop a stochastic model that predicts the stability of such epigenetic states from affinities of the molecular components. We find that the stability, in particular, depends on the maximum possible cI protein production, and on the number of translated cro proteins per transcribed mRNA....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2007
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0703166104